
Importance of Superemitter Natural Gas Well Pads in the Marcellus
Shale
Dana R. Caulton,†,⊥ Jessica M. Lu,†,# Haley M. Lane,† Bernhard Buchholz,‡,∇ Jeffrey P. Fitts,†

Levi M. Golston,† Xuehui Guo,† Qi Li,§,□ James McSpiritt,† Da Pan,† Lars Wendt,∥ Elie Bou-Zeid,†

and Mark A. Zondlo*,†

†Department of Civil and Environmental Engineering, Princeton University, 59 Olden St., Princeton, New Jersey 08540, United
States
‡German National Metrology Institut, PTB-Braunschweig, Braunschweig 38116, Germany
§Department of Earth and Environmental Engineering, Columbia University, 500 W 120th St., New York, New York 10027, United
States
∥Hunterdon Central Regional High School, Flemington, New Jersey 08822, United States

*S Supporting Information

ABSTRACT: A large-scale study of methane emissions from well pads was
conducted in the Marcellus shale (Pennsylvania), the largest producing natural gas
shale play in the United States, to better identify the prevalence and characteristics of
superemitters. Roughly 2100 measurements were taken from 673 unique unconven-
tional well pads corresponding to ∼18% of the total population of active sites and
∼32% of the total statewide unconventional natural gas production. A log-normal
distribution with a geometric mean of 2.0 kg h−1 and arithmetic mean of 5.5 kg h−1

was observed, which agrees with other independent observations in this region. The
geometric standard deviation (4.4 kg h−1) compared well to other studies in the region, but the top 10% of emitters observed in
this study contributed 77% of the total emissions, indicating an extremely skewed distribution. The integrated proportional loss
of this representative sample was equal to 0.53% with a 95% confidence interval of 0.45−0.64% of the total production of the
sites, which is greater than the U.S. Environmental Protection Agency inventory estimate (0.29%), but in the lower range of
other mobile observations (0.09−3.3%). These results emphasize the need for a sufficiently large sample size when
characterizing emissions distributions that contain superemitters.

■ INTRODUCTION

Many recent campaigns have undertaken the goal of sampling
methane (CH4) emissions from natural gas production
facilities to understand the impact of skewed distributions
and thus “superemitters” on total emissions. Brandt et al.1

reported the disparity between bottom-up and top-down
methods of CH4 emissions where top-down methods
consistently indicated higher emissions than bottom-up
studies, which were largely in line with inventory estimates.
More recently, Alvarez et al.2 estimated the total emissions
from the United States oil and natural gas supply to be ∼60%
higher than the U.S. Environmental Protection Agency (EPA)
inventory. Both works suggested that the difference could be
due to the presence of “superemitters”: infrequent sites with
high emissions that contribute an outsize proportion to the
total emissions relative to their frequency. This superemitter
phenomenon was observed and reported in several recent
papers,3,4 including one study in the Barnett Shale (Texas) that
managed to reconcile bottom-up and top-down emissions with
extensive ground-based sampling.5,6 However, most studies
have been based on relatively small sample sizes (∼0.1−1% of
total sites) and on basins with a small contribution to total U.S.
production. This has created uncertainty in reported

distributions because small sample sizes are insufficient to
capture and characterize potentially very rare (e.g., events with
frequency <1/100), but important events. For example, Brandt
et al.7 compared results from several studies that reported log-
normal distributions and also simulated distributions with
different assumptions. The true distributions followed even
more extreme distributions than log-normal, suggesting large
and very infrequent emissions where the top 5% of sites
contribute ∼50% of emissions.7 For the purposes of this work,
we define “superemitters” as the top 10% of sites and also
compare to the top 5% threshold.
The Marcellus shale play is the largest producing shale play

in the United States and accounts for ∼38% of U.S. dry shale
gas production. It outputs about three times as much as the
next most productive shale play (Permian, Texas/New
Mexico) and almost 1.5 times as much as the Barnett
(Texas), Fayetteville (Arkansas), Eagle Ford (Texas), and
Haynesville (Louisiana/Texas) shale plays combined (EIA,
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www.eia.gov). The Marcellus represents a unique challenge
relative to other locations due to its mountainous and forested
terrain and large areal extent. Traditional techniques that
employ Gaussian dispersion models to derive emission
estimates are assumed to be invalid under complex topography
as the assumptions necessary to derive the Gaussian equation
are not met (e.g., stationary wind field, constant dispersion
coefficients relationships).8 For this reason, the Marcellus9−12

has been understudied relative to other shale plays such as the
Barnett, Pinedale, Uintah, and Denver-Julesburg basins.3,4,13,14

The largest study in the Marcellus from Allen et al. used
measurements from 47 unique sites; however, these measure-
ments were collected at the component level and did not
measure tank “flashing” emissions, which may not lead to
representative emissions from a site as a whole.15 A more
recent campaign in the Marcellus from Omara et al. collected
measurements from 45 sites.12

In order to obtain a large sample size in this relatively
understudied region, we used a mobile lab to sample
downwind of well pads in the Marcellus and developed a
more robust sampling protocol that has been previously
reported.16 At the time of this study in Pennsylvania, there
were ∼18,000 permitted unconventional gas wells with
∼10,000 of these categorized as active. Single well pads can
have multiple well permits with different statuses. Wells can
also be considered regulatory inactive, which corresponds to a
well that can still produce natural gas but has been sealed in a
temporary way such that the seal can be removed and the well
returned to an active state in the future. Additionally, wells can
be plugged (permanently rendered inactive) or abandoned/
orphaned (not maintained, but not necessarily plugged). The
Pennsylvania Department of Environmental Protection
(PADEP) maintains a separate inventory of orphaned,
abandoned, and plugged wells that were not targeted for
sampling in this work. The breakdown of unconventional gas
permits in Pennsylvania is shown in Figure S1. There is a total
of ∼3000 unique unconventional well pads with at least one
active well.

■ METHODS
Site Selection. A pseudorandom sampling method was

used to sample efficiently as the large spatial extent of the
Marcellus and the inaccessibility of many sites would make a
random sample challenging. Unconventional natural gas sites
were first screened by the minimum distance from the road to
remove sites farther than 300 m from a road. Initial tests had
shown that it is difficult to visually confirm a well pad beyond
this distance and additional isotopic or hydrocarbon measure-

ments were not available to confirm unseen emission sources.
Additionally, high emitters can be detected at farther distances
leading to potential oversampling of these sites. Sites were then
grouped into nominal wind directions (N, E, S, W) and sites
with elevation differences >50 m or with large physical
obstructions between the site and the road were excluded. The
final sites were grouped into routes (15−25 well pads per
route) based on proximity and wind direction. Further details
of the site selection process can be found in the Supporting
Information (SI) and Figure S2.

Campaigns. In total, field campaigns were deployed in
Pennsylvania to sample unconventional wells from 7/6/2015
to 7/21/2015, 10/31/2015 to 11/7/2015, 6/20/2016 to 7/2/
2016, and 7/11/2016 to 7/15/2016. These field campaigns
spanned 36 days, ∼200 h and covered ∼16,000 km. Typically,
two outings were scheduled each day to maximize data
collection under conditions with near-neutral static stability
(∼0600−1100 and ∼1700−2200 local time). During each
outing, most sites were sampled with two downwind transects.
Two sites were selected near the beginning and end of the
outing and sampled with 10 repeat downwind transects. Our
previous work has shown that at least 10 transects are needed
to provide a robust estimate of the influence of atmospheric
variability, the greatest contributor to total uncertainty.16 A
unique “sampling period” is defined as any amount of repeat
transects at a site within a 1 h interval (e.g., if a site was visited
with 5 transects at 0800 local time and 20 transects at 2000
local time, these would count as two unique sampling periods).
In total, 712 unique well pads were sampled. Of these, 137 well
pads were resampled multiple times to investigate temporal
variability as has been observed by other recent works,10,17 to
produce a total of 1009 unique sampling periods with a
combined 2542 downwind transects. After measurements,
some well pads were rejected as they could not be visually
confirmed, had not been completed (per state database), had
inaccessible roads, or were measured during low wind speeds
(<1 m s−1). These 712 unique unconventional well pads
correspond to 2915 unique wells (1731 unique active wells
after quality screening) representing ∼18% of the total active
unconventional well population. A map of the sampled well
pads is shown in Figure 1a with sampling counts in Figure 1b.

Mobile Lab and Data Processing. A compact sport
utility vehicle was equipped with chemical and meteorological
sensors on a platform raised ∼1 m above the car to reduce flow
effects from the car.18 Open-path sensors (CH4 by LI-COR
7700 and H2O/CO2 by LI-COR 7500A) measured at a total
height of 2.44 m above the ground and were calibrated prior to
each campaign with either a NOAA standard (1.8724 ± 0.0030

Figure 1. (a) Topographic map of Pennsylvania with major highways in orange, the population of active unconventional gas wells in green,
nonactive unconventional gas wells in pink, and sampled sites in yellow. (b) Counts for each sampling type showing sites attempted and sites that
successfully passed the criteria of being within 300 m of a public road, <50 m elevation difference, >1 m s−1 wind speed, and with an emission rate
above the detection limit as described in Sample Quality Control.
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ppmv CH4 and 394.51 ± 0.07 ppmv CO2) or, for higher
amounts, with a commercial gas standard (2.12 ± 0.01 ppmv
CH4 in air, Air Liquide). The LI-COR 7700 and LI-COR
7500A have expected RMS noise levels of 1.6 ppbv and 0.04
ppmv at 1 Hz, respectively.
Data were processed according to the Gaussian plume

method described in previous work.4,16 Briefly, a Gaussian
plume model was used to simulate concentrations along the
measurement path assuming a constant reference emission rate
(1 kg s−1 for simplicity), and modeled wind speed and stability
from the NOAA ready archive meteorology (EDAS 40 km, 3
hly output available at www.ready.noaa.gov) at the time and
location of measurement. The ratio between observed and
modeled concentration is thus the inferred emission rate in kg
s−1. Vertical and horizontal dispersion coefficients were
calculated according to Briggs19 for rural sites. As noted
previously, there is difficulty in applying this technique in
complex terrain. To overcome this, we removed highly
complex sites based on the sensor-well pad elevation
differences (>50 m) and minimum road distances (>300 m)
as criteria noted earlier. A detailed discussion of uncertainty
analysis for this method is available in Caulton et al.16 This
work details the systematic analyses of the major uncertainties
in this approach including wind speed, stability, source
location, and diffusion assumptions. The Gaussian method
described here was also compared to more complex emission
estimate calculations including an estimate resulting from a
high-resolution large eddy simulation that does not rely on
diffusion parameters. In addition, three controlled releases,
performed as an independent assessment of the Gaussian
method by comparing the actual release rate and Gaussian
estimate with on-site winds, showed an average difference
<20%. Uncertainty was determined to be mainly driven by
atmospheric variability, which is described more generally as
transect to transect variability, but other sources, such as the
NOAA winds typically used, also contribute to the overall
uncertainty. For sites with ∼10 repeat transects, an average
relative standard deviation of 77% (ranging from 12 to 260%)
was observed for repeat emissions estimates. Using a Monte
Carlo approach the sources of uncertainty including an
expected 100% standard deviation (75% of repeat observations
were equal or less than this value) due to random atmospheric
variability, lead to an asymmetric 95% confidence interval of
0.05x−6.5x, where x is the emission rate for sites with less than
three transects. Uncertainty at sites with multiple transects of
the plume is estimated to be 0.5x − 2.7x at the 95% confidence
interval. Sample Quality Control presents evidence that the
elevation and distance quality screening is justified.
In addition to the emission rate, a limit of detection (LOD)

was calculated at every site by calculating the emission rate
corresponding to a theoretical observed peak of 50 ppbv. The
50 ppbv threshold was determined by roughly three times the
average observed standard deviation of the background (∼15
ppbv) in a ∼10 min “clean” area. The limit of detection
combines all factors that may reduce the detection ability of
the method, including high wind speeds, unstable conditions,
long distances and disparity between source emission altitude
and measurement height. Sites were determined to have no
emissions if retrieved emission rates were less than the LOD.
The median calculated LOD was 0.12 kg h−1.
Additionally, the data set used here including the emission

rates, date/time, LOD, uncertainty estimate, meteorology, site
locations, and traits including spud date, operator, production,

and status is available from the DataSpace archive at Princeton
University (http://arks.princeton.edu/ark:/88435/
dsp01wh246v90d).34 This archive is free and open to the
public.

■ RESULTS AND DISCUSSION
Sample Representativeness. The sampled well pads

were compared to the overall population of unconventional gas
wells in Pennsylvania to assess differences in spud date (well
age), total gas production volume, operator, and region as
obtaining a representative sample is necessary to produce
accurate results. Lifetime gas volume was used to calculate
average daily production (cumulative from 2003 to 2016
divided by the number of days of production) and is used in
this section because some sites were sampled multiple times.
While emissions measurements were made at the well pad (i.e.,
site) level, statewide data are reported at the individual well
level. Individual wells of the sites measured were extracted so
that the data could be directly compared on the same level.
Similar distributions of spud date were obtained for the
sampled sites and population shown in Figure 2a with the

sampled distribution being four months older than the overall
population. No significant differences were found for the total
production distribution as shown in Figure 2b. Comparing
operator distribution is more challenging as there are 74
unique operators with active well permits in this region, some
with only a few well pads that are geographically clustered.
Instead, we separated the operators by company size as defined
by the number of wells they operated. In the overall
population, 54% of active wells are operated by “large”
companies, here defined as those with >500 wells. These
companies were slightly overrepresented in the study (65% of
the sample population) as they had the most well pads and
were geographically diverse. The geographic distribution of the
overall population of wells in the northeast, southwest and
elsewhere is 51%, 46%, and 3%, respectively. In our sample,
these regions, respectively, represented 58%, 42%, and <1% of
the sites. Overall, the sampled wells compare appropriately to
the population, with no clear bias toward a category that would
affect the results.

Sample Quality Control. The complex topography of the
Marcellus makes applying Gaussian dispersion approaches
challenging as the assumptions necessary to derive the
Gaussian plume equation are not valid. A more detailed
description of this analysis is provided in the SI and Figures

Figure 2. (a) Distribution of the spud dates of sampled wells and the
population of active wells in Pennsylvania. (b) Distribution of the
average daily production volume (cumulative from 2003 to 2016
divided by the number of days of production) of sampled wells and
the population of active wells in Pennsylvania.
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S3−S6. To summarize, the analysis yielded results that suggest
our treatment of the data was not affected by topography. In
addition, several screening criterion were examined and the
final selection criterion removed sites with LOD > 3.6 kg h−1.
This criterion was selected as it combined the effects of all
factors that affect data quality while simultaneously retaining
the most data, screening out only ∼5% of the calculated
emissions as shown in Figure 1. A more detailed discussion of
the selection of this threshold is available in the SI and Figure
S7.
Sample Averaging Schemes. As there is substantial

uncertainty in any single observation, it is advantageous to
average to produce a more robust data set. In Figure 3 the

distributions for all emission rates are shown along with
observations averaged to unique sampling periods (aggregated
to those with measurements <1 h apart) and observations
averaged to unique well pad. These scenarios reduce sample
size to 1009 sampling periods and 712 well pads, which are
further reduced to 956 and 673 after quality screening. While
the distribution geometric means and standard deviations are
not significantly different, the contribution of the top 10% of
emissions does decrease for emissions that have been averaged.
The unique sampling periods correspond to additional
experiments that resampled sites at different time scales to
observe changes in emissions over time. As real variability was
observed, the sample period mean (with 956 observations) is
used as the best statistic for reducing the effect of random error

while preserving the potential influence of actual emissions
variability. The sample geometric mean emission rate is 2.0 ±
0.2 kg h−1 with a geometric standard deviation of 4.4 kg h−1

and an arithmetic mean of 5.5 kg h−1 (±0.9 kg h−1 standard
error). The contribution of the top 10% of emissions,
(emissions > ∼9 kg h−1) account for 77% of the total
emissions. This number includes nonemitting sites: 31% of
sites sampled had no observed emissions. The geometric mean
is the best estimate of the expected emission at a single site or
the most frequent emission expected and would be expected to
be consistent across studies with a small number of samples.
The arithmetic mean is suitable as an emission factor for
calculating expected emissions from a large sample; the
arithmetic mean and contribution of the top 10% would not
be expected to be consistent across studies with different
sample sizes and the large sample analyzed here is expected to
better constrain these estimates. However, with a log-normal
population, a single emission rate estimate will not always work
if the inventory area of interest is small and should be used
with caution.

Emission Comparison by Well Status Geographic
Area, Operator Size and Production Class. The emissions
for the well pad averaged database were sorted into classes for
well status, geographic area, operator size, and production class
(details of the methodology to categorize well pads with
multiple wells into different classes are available in the SI).
Well pad averages were used as most of the repeat sampling
was done for active sites in northeastern Pennsylvania. As
defined in Sample Representativeness, these classes focus on
the larger differences between groups (northeast vs southwest)
rather than individual locations. For instance, northeastern
Pennsylvania is dominated by dry gas production, natural gas
with relatively low heavier hydrocarbon ratios, and southwest-
ern Pennsylvania transitions to wet gas production with higher
hydrocarbon ratios. Operators were defined as “large” if they
owned >500 wells and “small” if they had less wells than this
threshold. Production volumes are reported by individual well,
but were aggregated to the well pad level and correspond to
the month a site was sampled. Sites were assigned a production
class according to a base 10 log of their production value. Sites
with no reported production were included in “<10 Mcf
day−1”. Distributions for each class are shown in Figure 4 along
with the frequency of sites with emissions > 9 kg h−1. Due to
the difference in the number of observations for different
classes, a multicomparison using iterative one-way ANOVA
testing was done using the log-transformed data to observe
differences in means. At the 95% confidence interval, the mean
emission rates are not statistically different by well status,
region, operator size, or production class. Small differences
apparent in classes are not significant using a two-sample
Kolmogorov−Smirnov test in almost all cases, likely due to the
small number of observations for some of these classes.
However, the comparable emissions of plugged and regulatory
inactive (which should also have a plug) indicate wells emit
past their active lifespans and may continue to be a significant
source of emissions, consistent with previous studies on
plugged/abandoned well emissions.20,21 While no difference is
observed for the dry northeast and wet southwest, the
occurrence of wet gas sites may not have been frequent
enough to truly differentiate these regions. For instance, a
recent study found that wet gas signals as denoted by high
ethane ratios were only found in parts of Washington County,
not the southwest region as a whole.22 Operator distributions

Figure 3. (a) Distribution of emissions for three scenarios: all
transects, transects averaged to unique sample periods, and transects
averaged to unique well pads, excluding sites with no emissions. (b)
Cumulative emissions for the same three scenarios, including sites
with no emissions.
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showed no differences and most production classes were not
different. The “<10 Mcf day−1” class distribution was
significantly different from the “10−100 Mcf day−1” and
“100−1000 Mcf day−1” distributions; however, the differences
appear to be small as all production classes have a similar
frequency of superemitters.
Comparison to Other Studies. Statistics for the results

presented here and other studies in the same region are shown
in Table 1.9−12 Note that only emissions computed from tracer
releases were compared for Allen et al.9 The geometric mean
emission rate observed is within the range of previously
observed estimates, but wide variation has been reported
across the Marcellus and most studies have had very small
sample sizes making this comparison ambiguous. For instance,
the geometric and arithmetic mean emission rates reported in
this work fall between Omara et al.’s11 comparison between
conventional and unconventional sites despite the fact that our

sample is only composed of unconventional sites and both
statistics are less than the results from Omara et al.’s12 more
recent and larger unconventional sample from the same region.
Notably, the geometric mean reported in this work (2.0 kg
h−1) is similar to other mobile laboratory derived geometric
means or medians across Texas, Colorado, Arkansas,
Wyoming, and British Columbia with mostly much smaller
samples sizes (0.63−3.7 kg h−1).3,13,14,23−26 The arithmetic
mean reported here (5.5 kg h−1) is, however, on the high end
of estimates for other regions as directly reported or calculated
from their available data (1.7−9.7 kg h−1) where most
observed mean emission rates < 3 kg h−1.3,13,14,23,24 As
mentioned, the larger sample size in this work is expected to
increase the accuracy of the arithmetic mean, so the higher
value observed here indicates the necessity of large samples to
calculate this metric from a log-normal distribution. The
contribution of the top 10% of sites (corresponding to 77% of

Figure 4. Comparison of emission rate distributions for different classes of (a) well status, (b) region, (c) operator type, and (d) production level.
Fraction of the sample for those classes identified as superemitters for (e) well status, (f) region, (g) operator type, and (h) production level.

Table 1. Unconventional Natural Gas Emission Rates from Different Campaigns in the Appalachian Region

study
sample
size sample unit

mean
(kg h−1)a geo. μ (kg h−1) geo. σ (kg h−1)

top 10%
contribution

top 5%
contribution

this work 956 sample period 5.5 2.0 4.4 77 66
this work 673 well pad 4.3 1.7 4.3 73 61
Omara et al.12 45 well pad 7.8 4.3 3.2 47 25
Omara et al.,11 unconventional 13 well pad 18.8 5.7 4 50 <40%
Omara et al.,11 conventional 18 well pad 0.82 0.55 4.2 36 20%
Allen et al.,9 tracer only 5 well pad 1.2
Goetz et al.10 3 well pad 8.7
aMean values here are author reported values. All other statistics are calculated from publicly available data sets and correspond to all reported
emissions; not all studies reported 0 emissions.
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emissions) and the contribution of the top 5% of sites
(corresponding to 66%) are at the high range of estimate from
many studies, suggesting the distribution observed here is
actually skewed to be more extreme than log-normal.7,12,25

This is confirmed by looking at the qq-plot that compares the
observed quantiles of the data to the predicted quantiles of the
distribution fit. A qq-plot for the sample mean emission rate
data set is shown in Figure S8. The emission rate quantiles
deviate from the expected 1:1 relationship at higher quantiles.
The increased contribution of the higher emitters in this study
highlights that there may be a few very significant and very
infrequent emissions that drive the overall emissions inventory.
Emissions less frequent than possible to capture in this study
may have even higher contributions to the total emission rate.
Additionally, the geometric mean loss rate observed (0.41%) is
in the lower range of previous work (0.09−3.3%) for geometric
mean or median), but the arithmetic mean loss rate (6.4%)
falls in the middle of the reported arithmetic mean loss rates
(0.57−12.6%).3,13,14,23−26 The overall comparison to other
work shows that mean emission rates may not vary much by
basin, but large data sets are still needed to capture the full
nature of the distribution as deviations in the “tail” could still
lead to large differences in the number and impact of
superemitters.
Functional Superemitters. As discussed in Zavala-Araiza

et al., the term “superemitter” is not well-defined. In addition
to the distribution of emission rates, loss rates have also been
utilized to examine the occurrence of “functional super-
emitters”.27 Proportional loss rates are defined as the emission
rate normalized by site natural gas production (available
monthly through the PADEP), as shown in eq 1. Produced
natural gas is assumed to be 80% methane.

loss rate
emission rate

0.8(natural gas production)
=

(1)

The distinction designates sites as superemitters if they are
outside the range of normal proportional loss rates, which can
more easily be attributed to defective equipment. Compara-
tively, sites with properly functioning equipment but large
production rates would give large signals, but would be more
difficult to mitigate. The comparison between emission rates
and proportional loss rates is shown in Figure 5. The
proportional loss distribution shown here also corresponds to
the sample period average. A comparison between propor-
tional loss distributions using all transects, sample period
averages and well pad averages is shown in Figure S9. Note
that proportional loss rates can only be calculated for sites with
reported production and so has a slightly different population
than the emission rates. The geometric mean loss rate was
0.41% with a geometric standard deviation of 10% and an
arithmetic mean of 6.4%. Also note that there are 11
observations with a > 100% proportional loss. All of these
sites were determined to be active, but had low production
rates of <150 Mcf day−1 compared to a sample median of
∼1000 Mcf day−1. Variation in day to day production that is
masked by the monthly summaries available or contribution of
leaks from storage units may be responsible for these results. In
addition, sites report the volume of gas sold, not necessarily the
total volume produced making >100% rates possible,
particularly if leaks or venting occurs before the gas metering
point and the site has low production. The proportional loss
distribution is significantly more skewed than the emission
rates, with a larger geometric standard deviation and a higher

contribution from the top 10% of emissions (93% vs 77%).
The proportional loss and emission rates also do not identify
the same sites as superemitters, with emission rate super-
emitters being >9 kg h−1 and proportional loss superemitters
>7%. The total contributions from the emission rate
superemitters correspond to a combined emission rate of
8,715 kg h−1 while the proportional loss superemitters isolate a
combined emission rate of 6,943 kg h−1.

Total Emissions. The combined proportional loss of the
representative sample of sites was 0.53%. This is calculated by
summing the emissions and production for this sample as
shown in eq 2:

combined loss rate
emission rates

0.8( natural gas production)
=

∑
∑ (2)

Our combined proportional loss of 0.53% has a 95%
confidence interval of 0.45−0.64%. The confidence interval
was calculated by simulating 1000 distributions using our
calculated distribution statistics (Figure 3) and summing the
resulting emission. We do not have data on production
variability, so production is assumed to be the same for each of
these distributions. This is higher than the range reported by
Allen et al.9 0.14−0.41% reflecting different assumptions of
“normal production” and including high and low estimates for
specific sources. This value is considerably higher than the
most recent EPA estimates of onshore natural gas production
leaks of 0.29%, corresponding to production and exploration
which includes nonroutine events like well completions that we
have no evidence were measured in this study.28 Aircraft
derived proportional loss rates in northeastern Pennsylvania for
unconventional sites including gathering stations span 0.08−
0.72%.29 Recent syntheses of observational data also points to
larger emission rates from production: 0.9% for the Appalachia
region (or 0.6% for PA specifically) and 1.5−2.3% for the
entire United States, though we note that the number of
observational measurements in the current Marcellus study is
comparable to12 or larger2 than the number of sites used for
the entire U.S. national estimates. The combined unconven-

Figure 5. Correlation between emission rate and proportional loss.
The red shading shows regions where emission rate and proportional
loss definitions of superemitter differ. The black solid lines correspond
to the geometric mean emission rate and proportional loss, while the
black dashed lines correspond to the emission rate and proportional
loss superemitter thresholds.
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tional natural gas production across Pennsylvania was ∼5.1 ×
109 Mcf in 2016.30 At the combined proportional loss
measured in this study (0.53%), ∼27 × 106 Mcf yr−1 of
natural gas (∼0.41 [0.35−0.49] TgCH4 yr−1) would be
emitted from normal unconventional gas extraction in
Pennsylvania alone. This is much higher that the PA DEP
reported 0.10 TgCH4 yr−1 for 2015, which includes drilling
and completion/workover events that again we do not have
evidence we measured.31 This estimate is in line with recent
work to upscale emissions specifically from unconventional
emissions in all of Pennsylvania that resulted in an emission
range of 0.25−0.56 TgCH4 yr

−1.11 This estimate is also in line
with observed top down flux estimates of natural gas emissions
for all production and transmission sectors in different portions
of Pennsylvania (0.13−0.41 TgCH4 yr

−1).29,32,33

■ IMPLICATIONS FOR EMISSION MONITORING
The results of the largest, most representative data set of
emissions from well pads in the Marcellus region are presented
here and show a geometric mean emission rate of 2.0 ± 0.2 kg
h−1. These emissions are within the range of previously
reported emissions in many basins including the Marcellus.
The emissions rates were highly skewed, with 77% of emissions
coming from the top 10% of sites. The proportional loss rates
were even more skewed with 93% of emissions coming from
the top 10% of sites. The presence of a very skewed data set
reiterates the importance of identifying superemitters for
efficient emission reduction strategies. The integrated propor-
tional loss of 0.53% for all sites is significantly higher than the
median or geometric mean value and inventory estimates,
further underscoring the need for quantification of these
sources as results from small samples may fail to appropriately
upscale results. Aggregate comparison of mean emission rates
and distribution by well status, region, operator size, and
production class showed almost no significant differences. As
the significance of the infrequent, but consequential super-
emitters becomes clear, more detailed analysis of the
characteristics and causes of emissions will be needed to
design effective emissions monitoring strategies and regula-
tions.
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